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OPTIMUM SAMPLING TIMES FOR SPECTRAL ESTIMATION

by

Lonnie C. Ludeman

ABSTRACT

The problem of optimum sampling strategies for spectral estimation

of Fourier-type signals in the case of finite discrete-time observations

was investigated. In particular, it was shown that minimum variance

unbiased estimates of amplitudes of sine and cosine terms of Fourier

signals embedded in additive zero-mean white noise can be determined by

sampling at the generalized Chebyshev times. The solution obtained,

by putting the problem in an optimum linear regression framework, is

that the generalized Chebyshev times are the zeros of the derivative

of the highest frequency cosine wave. If the number of samples exceeds

the intrinsic dimensionality, repeated independent sampling at those

points not only provides the best approximation to the Fourier signal in

a minimum variance sense but also the linear minimum variance unbiased

estimate of the coefficients,
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I. INTRODUCTION

In obtaining spectral information from noisy discrete-time

measurements of Fourier signals, a basic question is whether performance

can be improved by carefully selecting the sampling times. Preliminary

results shown by the author [8,9] in pursuit of the answer to this ques-

tion helped formulate the main objectives of this research effort. The

objectives were:

(1) Find the optimum sampling strategy for the case of

minimum variance unbiased estimation of (a) the

amplitudes of several sine and cosine terms of har-

monically related frequencies in white noise;

(b) the amplitudes of Fourier-type nonharmonically

related signals in additive white noise; and (c)

spectral content of a low pass process in additive

white noise.

(2) Repeat (1) for special types of nonwhite additive noise.

(3) Find the improvement obtained with nonuniform over-

sampling for the cases given in (1) a, b, and (2) a, b.

(4) Show if possible under what conditions the uniform

sampling value estimates, determined from nonuniform

sample times, provide a sufficient statistic for the

spectral estimation problem.

During the grant period progress was made in areas specified in

Objectives 1, 2 and 3, while the sufficient statistic problem given

in 4 has not been resolved. In the sections to follow, optimum

sampling strategies will be shown for both Fourier signals and

Fourier-type signals in additive white noise ((I) a, b) from two

different approaches.

The first approach, the main body of the report, places the

problem in a linear regression framework and uses the elegant and

brilliant work of Kiefer and Wolfowitz [21 to arrive at the solution

that the optimum sample times are specified by a generalized Chebyshev

set.

3



The second approach--more of a brute force method--is that of

minimizing the trace of the error covariance matrix as presented in

Appendix A. Optimum sampling points were obtained by applying

standard search and steepest descent optimization algorithms to

the multidimensional problem. This approach was complicated by the

dimensionality, the intrinsic dimensionality, and the preponderance

of local rather than global minimums.

The nonwhite additive noise problem was approached again both

by computer simulation (Appendix A) and from the standpoint of changing

the colored noise to white noise via a bleaching filter and searching

for the Chebyshev points of the bleached basis. Computer results showed

equal spacing for the three sample case of a signal composed of a

sum of a sine and cosine wave for colored noise with exponential auto-

correlation function.

Progress on Objective (3) has been minimal, but because of results

of Kiefer and Wolfowitz [2] it is believed that for large numbers of

samples, much more than the intrinsic dimensionality of the problem,

uniform sampling strategy requires roughly 8/n times the number of

samples in the optimum strategy to yield identical performance. The

*optimal sampling strategy may in some sense not be physically meaningful

in that it requires taking more than one sample at several points or

times: however, because of periodicity of the assumed signals this

could mean simply using samples in a later period.

L1
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II. PROBLEM FORMULATION

The common problem of spectral estimation involves the estimation

of the frequency content of a given signal. Normally the signal is not

available over all time and has been contaminated with additive noise.

If we assume further that the processing is to be done digitally, we

have available only measured values at some finite set of times. The

problem we wish to address is that of optimum sampling strategies for

spectral estimation of Fourier-type signals. The Kth order Fourier

signal (trigonometric polynomial) is given by

A K K

xK(t) = 2+ Akcoskt + Bksink7rt (1)
k=lL

The AoA 1 ,..,A K and B1 ,B2,..., BK represent unknown nonrandom Fourier

coefficients. It is further assumed that we have available z(t) over an

interval -1 to 1, given by

z(t) = x K(t) + N(t) -1 < t < 1 (2)

where N(t) is a random noise process characterized by its autocorrelation

function. Let TM be an arbitrary set of M time values given by

M  = tlt 2 9 .... tM}

Observing z(t) at the times of T where M is greater than or equal to
M

2K + 1 gives the set of measurements

z(t) = x K(ti ) + N(t ) i = 1,2,...,M> 2K+l (3)

We would like to select TM in such a way that optimal estimates of

A,A A,... ,AK, B1,B2  .. BK or xK(t) are obtained where optimality is

with respect to a certain performance criterion and a given M. Two

prominent criteria are i) minimax variant which is to minimize the

maximum variance of the estimate, xK(t) over all te[-l,l] using Lagrangian

interpolation, and 2) minimum trace of the error covariance matrix, that is,

minimizing the sum of the variances of the estimates of the coefficients.

The first criterion will be used in the body of this report, while the

results of the second are given in the appendix for completeness.
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III. OPTIMUM POLYNOMIAL REGRESSION

The optimum spacing problem for finite polynomial regression has

been investigated by De La Garza [4,5], Hoel and Levine [6], and Kiefer

and Wolfowitz [3]. The framework for their development is as follows:

Let P(x) be a polynomial given by

P(x) = ai + (24x + " ."+ aml xm2 mm 1(4

and let y(xi) represent observed variates given by

y(xi) = P(xi) + 6i  i = 1,2,... ,N, N > (me+l) (5)

where 6. are uncorrelated random errors with known variances and zero means.1

It was shown that given a selection of N > (m+l) distinct points xi,

with minimum x. -1, maximum x. = 1, it is always possible to respace1 1

at k+l distinct location with repeated values of x. to yield identical1

performance. Therefore, for optimum selection you need only find those

(m+l) points and the number of times each was repeated. The points of

observation and the number of times n. for minimax variance as given by

Kiefer [2] are

x0 -, x. -cosj!r, j 1, 2, ..., m-l, X = 1, with (6)
j m

i N N N
n N n. N i . ml n N (7)
o2m' 1 m m 2m

This result will now be applied to the special case where x K(t) contains

only harmonic cosine waves.

Example 1. Let x Kc(t) represent a series of harmonic cosine waves

given by
m

XK (t) = A + IAk coskt (8)

k=I

It is well known that each of the cosine waves coskt can be written in

terms of powers of cosvt, the fundamental, by repeated use of the

recursive relation

cosk~t = 2cos(k-1)7t cosrt - cos(k-2)7t

That is, x (t) can be written as a Kth order polynomial in coswt given by
Kc

6



XKc(t) = ao + cosrt + a2 (cosrt)
2 + ... + aK (coslt) (9)

By letting cos t = x, we have the -1 < x < 1 and the polynomial condition

necessary to find the optimal x and thus the corresponding optimal t

from the polynomial regression results given by equation (6). This

yields

cosrt = -i cosrt = -cosj- j = 1, ..., m-1 cosrt = 1 (10)

Therefore we see the solution for the t., after reordering, is as follows:

t.= = 0,1, ..., m on [0,1] (11)
3 m

Computer results using the formulation given in Appendix A for

the case of a cosine wave and its first harmonic showed that the optimum

points on the interval [0,1) were t = 0.0 and t = 0.5 with these same times

repeated when the number of points taken was greater than 2. If, however,

harmonics were skipped--for example, using only the first and third--these

points were no longer optimum. If harmonics are skipped or not present,

the intrinsic dimensionality of the problem has been reduced and the

resulting cosine functions used for the basis in the generalized regression

are no longer Chebyshev.

Computer results showed also that for two cosine waves not har-

monically related, the optimum times were eaually spaced if the waves

were Chebyshev.

F7



IV. GENERALIZED OPTIMUM REGRESSION

In Kiefer and Wolfowitz [ 2], the optimum selection of regressor

variables was extended to cover other nonpolynomial regression problems

involving Chebyshev systems. In this section we will summarize the impor-

tant results of their extension and later apply them to the problems of

spectral estimation.

The regression problem considered assumes the observed

function z(t) is given by
m

z(t) = ' fi(t) + N(t) -1 < t < 1 (12)

i=O

where the f.(t) are continuous and linearly independent real-valued functions
1

on [-1,1]. We would like to select ti, i0,1.... ,n~b+l such that the

maximum variance on z(t) over T is minimized where T={t:-l<t<l1.

The functions f (t), f1 (t),.... f (t) are called a Chebyshev system

m

on a set U if every linear combination c.f (t), with not all of the real

k=O

constants c. zero, has k or fewer zeros on U. Several other equivalent

specifications are given by K and W [3 ]. We shall denote B(c*) Lo be the

m-1

set of m+l points where Ifm(t) - c*fk(t)I attains its maximum on [-1,1]

k=O

and c* = (c, cl, ..., Cml) as the constants c = (coc,...,c_) such

that max Ifm(t) - ckf,(t)I is minimized.
-l<t~l r.c9

j=O

B(c*) consists of the m+l points given by

t* = it t* <t < < * t* , 1.

o , m-l m

Kiefer and Wolfowitz have shown for the given assumptions that

the c* must satisfy

[f (t) - f (0) f (t)C*(dx) -0 0 < i < m (13)
- J-0



For the case where the probability measure is uniform, we have

J ft -(t) c~f (t) fi(t)dt = 0 0 < i < m (14)
-1 j=0

If we further assume the {f.(t), j=Ol.... ,ml to be orthogonal on [-1,11,J

i.e.,

[1 f3(O fk t dt = w6.jk  for j,k = 0,1,..., m (15)

where w. > 0

then the set of equations in (14 ) reduce to

c'w. = 0 0 < i < mii

Since w. are nonzero it implies that c. = 0 for i=O,l,...,m-1.J 1

With this result B(c*) is seen to be from [ 3] to be the place where

I fm(t)I attains its maximum values on (-1,1).

Application to Spectral Estimation White Noise

The above result is now applied to the case where f.(t) are the

Fourier Basis functions on -l < t < 1 given by

f (t) = 1
0

fk(t) = sinrt

f 2(t) = cos t

f3(t) - sin2nt

f4t) = cos2wt

f :l(t) = sin(m)7rt

fm(t) = cos(! )7t

We wish to select the times t such that the maximum variance is

minimized throughout -1 to 1. The result states that the optimum times

m
will be the points at which Icos2ft I reaches maximum, that is, where

t equals -1 and 1 and sin-irt equals zero- Therefore the times are given by
2

9



Jr r 2j/m j = 0,1,..., m/2

m
t = 0 which implies t 0

-jr -2j/m i = 0,1,..., m/2

These points are illustrated in Figure 1 below.

Optimumno0 nI nmi nm number

Optimum
tO  tI  tm_1  t times

0 /. " a 0 .... 0 0 Chebyshev
-1 -(m-2)/m -4/m -2/m 0 2/m 4/m (m-2)/m 1 t points

Figure 1. Optimum Sample Times for Estimation of Fourier

Signals: m+l Chebyshev Points with N Total Samples.

For N samples, where N is greater than m+l, the above Chebyshev

points will have weights 1' m given by

1 1 1

-m' Qi =- i=1,2,....m-l, m = 2m

If N is the total number of points, then n., the number of samples to

be taken at t., is N-. Furthermore, if we let N = 2m-r where r is an

integer, we have

n = r, n. = 2r, i = 1,2,...,m-l, n = rO 1m

The variance at each point and thus the minimum maximum variance

becomes a 2/n. where a2 is variance of each observation and n. is the
.3 .3

number of measurements taken at each point in the interior of -1 and 1.

When N is a multiple of 2m as above, we get

2 2
minimax variance = mo = a

N 2r

Kiefer and Wolfowitz[2] defined a sampling efficiency and showed

for polynomial regression that the evenly spaced samples strategy

requires roughly 8/7 or about 5/2 times that of Chebyshev points

strategy for large N.

10



Application to Spectral Estimation: Colored n:oise

If the N(t) given in equation (12) is not white but its autocorrelation

function is known, one approach to finding the optimum sampling times is to

change the problem to white noise by "bleaching." We assume that N(t)

can be obtained by passing a white noise process w(t) through a time

invariant linear filter with system function H(s). The whitening filter

would be the reciprocal of H(s) and would operate on z(t) to give a new

measurement process z b(t) shown in Figure 2.

N(t)

w(t) H(s)

+ Bleaching

I- _ 2(t) Filter b b
xt(t)sHb(S)-H--ZFiHter 1 z (t)=x (t)+w(t)

b (s)

Figure 2. Conversion to White Noise Problem by Bleaching.

The z b(t) is composed of w(t), a white noise process, and a bleachedb

version XK(t) of xK(t). If we allow the filtering to reach a steady
b

state, z (t) can be written asss

K

b A0 -1 HbI 0wz s(t) = .b(0) + L Hb(jkwo)I Cos kw t + tan Hbl Qkw°)s -H() klos o HbR (jkw)

k=l

+ Z IHb(jkwo)Isin(kwot + tan- 1 "H(jkw +) (16)bH_ R(kWoT + wt

k=l

+ w(t) where w =
0

We now have the same framework as before for optimum linear

regression. It is easy to show that the translated sine and cosine

functions are linearly independent and Chebyshev, thus specifying the

optimum qampling times for the steady state bleached z(t). The

performance, however, of the estimates will be modified by the fact

that the bleaching process changes the variance of the N(t) by

l/H(jO)12 . Computer results for the case of colored noise with auto-

correlation function RN(T) = e- a T and a first order trigonometric

11



polynomial showed that equally spaced samples were optimum. Results for

higher order trigonometric polynomials and over sampling were not

obtained.

V. CONCLUSION

It has been shown that optimum sampling strategies exist for

estimating Fourier signals using a finite number of discrete time

observations. By framing the problem as a generalized regression

with a Chebyshev basis, it has been shown that the generalized Chebyshev

times are the zeros of the highest sine wave considered. Therefore, the

samples are equally spaced with the number of unique samples being

determined by the dimensionality of the trigonometric polynomials.

For the case of a Fourier series of order m, with no missing harmonics,

the sample points on -1 to 1 are + ii, j = 0, ... , m/2. If harmonicsm
were missing, the dimensionality of the problem has been reduced and a

fine structure appears. When a Fourier-type signal was used rather than

a harmonic structure results again indicate the uniform spaced property

and repeated samplinq are optivium provided the signal components are

Chebyshev. If the observations are obtained in colored noise, with

a known exponential autocorrelation function, a bleaching filter

applied to the data gives the solition of equally spaced samples located

at the zero crossings of the derivative of the phase shifted highest

order cosine wave.

12



APPENDIX A

MINIMUM TRACE APPROACH

(1) MATHEMATICAL FRAMEWORK

To find the optimum times by computer techniques we will first

convert the problem to a matrix formulation and the signal, whose spectral

content is required, will be modeled as follows for Fourier and Fourier-

type signals:

K K

X(t) -+ Ak cosWt + B sinW t (A-l)
XK 2k k L k k

k=l

For Fourier signals the Wk are harmonically related, otherwise XK(t)

represents a "Fourier-type" signal. It is further assumed that XK(t)

is contaminated with an additive process N(t), giving the observed

process

z(t) = XK(t) + N(t) (A-2)

Normally, z(t) is available at a finite set of M times values ft. : i=1,2,1

., MI where M is greater than or equal to 2K+1. It becomes convenient

to formulate the problem in matrix form, letting
A K K

z(t.) =-+ AkcosWkt i + BksinWkti + N(t i) i=1,2 .... M

k=l

h..e + N(t.) (A-3)

where
li 2i sinKti]

h. cOSW1 ti cosW2t1 ... coxWKtiI sinW t sinW t ... inW

ande [AI A A 2 ... AK~ 1B 2  " K] T

The entire set of observations can now be written in an M vector as

follows:

Z(M) = H(M)'e + N(m) (A-4)

where Z(M), N(M) and H(M) are given by

T
= [Z(tM) Z(tMl) ... Z(t)]

13



N(M) I N(t M) N(tM-) ... N(t) 1T

(2) OPTIMUM ESTIMATOR

The optimal estimate e, for the Fourier coefficients, will imply

the best linear unbiased estimate of 8. Mendel [71 has shown that for

random noise N(M) with noise covariance matrix R(M), such an estimate

and its corresponding error covariance matrix P(M), are given by:

O(M) = IHT(M) R 1 (M) H(M)1 1 HT(M)Rl(M)Z(M) (A-5)

P(M) = I HT(M)R-I(M)H(M)l - (A-6)

Since the diagonal terms of P(M) represent the variance of the

spectral estimates, a measure of overall performance, e, for the estimate

0(M) can be defined as the trace of the matrix, i.e.,

e = trace [P(M)]

Looking at e, we see that it is a function of the times ti selected. What

we wish to do is select the times ti such that the e is minimized.

(3) COMPUTER FORMULATION

(a) White noise case. The performance e given by the trace of P(M)

was found analytically for the two cosine case, and two cosine and two

sine wave case for various number of samples. The formulas given in

Appendix B allowed a direct evaluation of e that was minimized on a

search of a uniform n-dimensional grid.

(b) Colored noise case. When N(t) is colored noise, the covariance

matrix R(M) is no longer diagonal. If the noise is wide sense stationary

with autocorrelation function RNN(T) given by

R N( T) =e-a~

then R(M) is given by

14



1 e-a ltn-tn-l1 e -altn-tll

R(M) e a 1te-ltnt e ll 11i

Le-Oltn-tnj e-llt1 . ..

A computer program was written to evaluate the P(M) given for the

special case that xK(t) contained only a sine and cosine wave of the

same frequency. A steepest descent algorithm was used to find the times

t1, t2 , and t3 that would give the minimum trace of P(M).

15



APPENDIX B

FORMULAE OF THE TRACE FOR PROGRAM IMPLEMENTATION

Two Cosine Waves Case

Let the signal z(t) be given by

z(t) = a1 cos w1 t + a2co% 12 t + N(t)

The trace of the error covariance matrix for the estimates of a1 and a2

when three, four, and n samples are taken, can be shown to be

(a) three samples (tl,t 2,t3 }

022 2 2 2 2 t os2wCtl

TRACE-= -L [cos wt 3 + cos wlt + cos wlt + coswt +coswt +
3 2 2 2 3 22 21

A= [(Cos2 w t + cos wlt2 + cos 2wt I) (Coswt + cos w2 t2 +Cos 2t

- (coswlt3cosw2 t3 + coswt 2 cosw2 t2 + coswlt1 cosw2 t)2

(b) four samples {tl,t 2 ,t3,t4 }

TRACE = - [COS2w1t4 + cos 2 wt 3 + Cos 2 + Cos wlt
222 cswt

+cos2w t + cos2 wt + cos wt +Coswtj
2 2 2 2 2 2

A [(cos2w t + cos w t + cos w t +cos 2 w t t) ( Co s 2w t + cos w t +cos 2 w t
1 14 1 3 1 2 1 1)( s 2 4  2 3 2 2

+ cos 2w2 tl)I

- (coswt cosW t + cosw t cosw t + cosw t cosw t + coswlt osw2 t1 )

(c) n samples tlt 2 ,... ,t

=2 2 2 2 2 2 2TRACE - [cos2Wt + ... + cos wlt + cos wlt + cos w t + ... + cos w t2+ ti
A in 12 11 2 n 22 21

r2 2 2 2 2 2A Co t +...+ cosw tw o(Co w 2t +...+ cos w2t2 +Cos

- (cosw1t ncosw 2 tn +...+ cosw 1t2cosw 2t2 + cosw1 tIcosw 2 t1 )
2

16



Two Cosine and Two Sine Waves

For this case we have

z(t) = a1coswIt + a2 cosw 2 t + b sinw t + b2sinw 2t + N(t)

The trace of the error covariance matrix can be found to be the following

for the four, five, and n sample case.

(a) four samples {tl, t2 , t 3 , t4 }

TRACE = a 2 [COF(I,1) + COF(2,2) + COF(3,3) + COF(4,4)]/A

A WX Z+ xY ZW +Y ZW X + zW xY
S=WX 2Y 3Z 4  1 234 1 2W3X4 1 2X3Y4

1 1IY2X3W4 - W1Z2Y3X4 - X1W2Z3Y4 - Y1X2W3Z4

2 +C 2 A2 X A2A + B2B1 + C2C + D2D1
1 1 1 1 1 2 2

W = AA + BB + CC + DD X A 2 + B2 + C2 + D2
2 1 2 1 2 1 2 1 2 2 2 2 2 2

W3 IA3 + BIB3 + CIC3 + DID3 X3 A 2A3 + B2B3 + C2C3 + D2D3

W =AA 4 + BIB + CIC + DD X = AA + B2B + C2C + D D
4 1 14 1 4 1 4 4 2 4 2 4 C2 C4 + 2D 4

YI =A3A1 + B3B1 + C3CI + D3D1 Z = A4AI = B4B1 + C4CI + D4D1

Y2 A 3A2 + B3B2 + C3C2 + D3D2 Z2 A 4A2 + B4B2 + C4C2 + D4D2
Y3 =A 2 +2 +2 +2 Z3 = AA + B4B +CC3 + D4D

2 2 2 2

4 3 4 3 4 3 4 3 44 4 4 4 4= A3% +BB4 + C3C +D3D Z4 =A4 +B4 + C4 +D4

COF(1,1) = X2Y3 Z4 + Y2 Z3X4 + Z2Y4X 3 - Z2Y3X4 - Z3Y4 X2 - Z4X3 Y2

COF(2,2) = WIY 3z4 + Yz3 W4 + z1Y4W 3 - zIY4 -Z3Y4W I - Z4W3Y

COF(3,3) = WIX2 Z W4 124 + Z1X4W2 - z1X2W4 - Z2X4W I - Z4W2X1

COF(4,4) = WIX2Y3 + XIY 2W3 + YIX 3W2 - YIX2W3 - Y2X3WI - Y3W2

A, - coswltI  BI = cosw1t 2  CI = coswlt 3  D 1 coswIt4

A2 = cosw2t1 B2 = cosw2t 2  C2 - cosw2t 3  D2 = cosw2t4

A = sinwlt B - sinwIt C = sinwlt D = sinwlt
3 1 1 3 1 2 3 1 3 3 1 4
4 = sinw2tI  B4  -sinw2t 2  C4  = sinw2t3  D4  -sinw2t4

* 17
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(b) five samples {t I , t2, t 3 , t 4 , t 5 }

TRACE = a2[COF(1,1) + COF(2,2) + COF(3,3) + COF(4,4)]/A

A = WIX2Y3 Z4 + XIY2 Z3W4 + YIZ2W3 X4 + ZIW2 X3y 4

1 1IY2X3W4 - W1Z2Y3X4 - X1W2Z3Y4 - Y1X2W3Z4

COF( ,=) = X XYZ + Y2Z3X + ZY4X - ZY X - ZY4X - Z4Y X2 34 2 34 2 43 2 34 3 42 43 2

COF(2,2) = W1Y34 + Y1Z3W4 + ZY4W3 - ZY3W4 - 3Y41 - Z4W3Y

COF(3,3) = W1X24 + X1Z2W4 + Z1X4W2 - ZX2W4 - Z2X4W1 - Z4W2X

COF(4,4) = W IX 2Y3 + X Y 2W3 + Y X 3W2 - YX2W3 - Y2W - Y3W2XI

2 2 2 +2 +2
W =A2 + BI + C + D +E = AIA + BIB + CIC + DID + EIE

1 1 1 1 1 1 12 12 1 2 12 12

W = AA + BB + CC + DD + EE X2  A 2 + B2 + C 2 + D2 + E2
2 1 2 1 2 1 2 1 2 12 2 2 2 2 2 2

W3 1 A3 + BIB3 + C1C3 + D1D3 + E1E3 X3 A 2A3 + B2B3 + C2C3 + D2D3 + E2E3

W4 1 A4 + B1B4 + CIC4 + D1D4 + E1E4 X4 A 2A4 + B2B4 + C2C4 + D2D4 + E2E4

YI A A3 + BIB3 + C1C3 + DID3 + E1E3 ZI = AA4 + BIB4 + C1C4 + DID4 + E1E4
Y2 2A3 + B2B3 + C2C3 + D2D3 + E2E3 Z2 1A2A4 + B2B4 + C2C4 + D2D4 + E2E4

Y = A 33 B + Ee Z3 3A4 + B3B4 + C3C4 + D3D4 + E3E4

2 2 + 2 2 2Y4 A 3A4 + B3B4 + C3C4 + D3D4 + E3E4 Z4 AZ + B4 C4 + D4 + E4

A, COWlt I  BI = COW t2  CI = COWlt DI = COW t4  E1  = COW t

A 2  CO os2tI1 B 2 = COsW2 t2  C 2 = COsW2 t3  D 2 - COxW2 t4  E 2 = COsW2 t5

A3 snwltI  B 3 = snw1t2  C3 = sinw1t3 3 = snw t4 E3 = s nw4t5

A sinw t B sinwt = sinw t D =sinwt E sinw t

4 2 1 4 2 2 C4  n 2 3  D4  n 2t 4  E4 s 2 5

18



(c) n samples n > 5

Same formulas as (b) except

wI  A2  B2 +...+ n2 X AA 2 + BB 2 +...+ nn 2

2 2 2
W2 1 A2 + B1B2 n.. nn2 X2 A 2 + B2 +...+ n2

W3 1 AA3 + B1B3 n.. nn3 X3 A 2A3 + B2B3  n 2n3

W =AA + BB + +n X AA + BB n +n
4 1 4 1 4 14 4 2A4 2B4 2n4

Y1 AA3 + B1B3 1 1 n 3 Z 1 AIA4 + BIB4" nln4

Y2 A 2A 3 + " 2"+ n2n3 Z2 A4 + B24" 24 n2n4
=A2  2 2 z AA +BB + n

3 3 3 3 3 3A4 3B4 3n4
2 2 2

Y4 A 3A4 + B3B4 n 3n4 Z = A + B4 n 4

n = cosw2 t

n 3  isnwlt

n sinwt

n4 = snw 2 t n

19
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